This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Special case of disjdmqseq (perhaps this is the closest theorem to the former prter2 ). (Contributed by Peter Mazsa, 26-Sep-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | eldisjn0el | |- ( ElDisj A -> ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjdmqseq | |- ( Disj ( `' _E |` A ) -> ( ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A <-> ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) ) |
|
| 2 | df-eldisj | |- ( ElDisj A <-> Disj ( `' _E |` A ) ) |
|
| 3 | n0el3 | |- ( -. (/) e. A <-> ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A ) |
|
| 4 | dmqs1cosscnvepreseq | |- ( ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A <-> ( U. A /. ~ A ) = A ) |
|
| 5 | 4 | bicomi | |- ( ( U. A /. ~ A ) = A <-> ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) |
| 6 | 3 5 | bibi12i | |- ( ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) <-> ( ( dom ( `' _E |` A ) /. ( `' _E |` A ) ) = A <-> ( dom ,~ ( `' _E |` A ) /. ,~ ( `' _E |` A ) ) = A ) ) |
| 7 | 1 2 6 | 3imtr4i | |- ( ElDisj A -> ( -. (/) e. A <-> ( U. A /. ~ A ) = A ) ) |