This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for lbsext . The set S is the set of all linearly independent sets containing C ; we show here that it is nonempty. (Contributed by Mario Carneiro, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsext.v | |- V = ( Base ` W ) |
|
| lbsext.j | |- J = ( LBasis ` W ) |
||
| lbsext.n | |- N = ( LSpan ` W ) |
||
| lbsext.w | |- ( ph -> W e. LVec ) |
||
| lbsext.c | |- ( ph -> C C_ V ) |
||
| lbsext.x | |- ( ph -> A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) |
||
| lbsext.s | |- S = { z e. ~P V | ( C C_ z /\ A. x e. z -. x e. ( N ` ( z \ { x } ) ) ) } |
||
| Assertion | lbsextlem1 | |- ( ph -> S =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsext.v | |- V = ( Base ` W ) |
|
| 2 | lbsext.j | |- J = ( LBasis ` W ) |
|
| 3 | lbsext.n | |- N = ( LSpan ` W ) |
|
| 4 | lbsext.w | |- ( ph -> W e. LVec ) |
|
| 5 | lbsext.c | |- ( ph -> C C_ V ) |
|
| 6 | lbsext.x | |- ( ph -> A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) |
|
| 7 | lbsext.s | |- S = { z e. ~P V | ( C C_ z /\ A. x e. z -. x e. ( N ` ( z \ { x } ) ) ) } |
|
| 8 | 1 | fvexi | |- V e. _V |
| 9 | 8 | elpw2 | |- ( C e. ~P V <-> C C_ V ) |
| 10 | 5 9 | sylibr | |- ( ph -> C e. ~P V ) |
| 11 | ssid | |- C C_ C |
|
| 12 | 6 11 | jctil | |- ( ph -> ( C C_ C /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) ) |
| 13 | sseq2 | |- ( z = C -> ( C C_ z <-> C C_ C ) ) |
|
| 14 | difeq1 | |- ( z = C -> ( z \ { x } ) = ( C \ { x } ) ) |
|
| 15 | 14 | fveq2d | |- ( z = C -> ( N ` ( z \ { x } ) ) = ( N ` ( C \ { x } ) ) ) |
| 16 | 15 | eleq2d | |- ( z = C -> ( x e. ( N ` ( z \ { x } ) ) <-> x e. ( N ` ( C \ { x } ) ) ) ) |
| 17 | 16 | notbid | |- ( z = C -> ( -. x e. ( N ` ( z \ { x } ) ) <-> -. x e. ( N ` ( C \ { x } ) ) ) ) |
| 18 | 17 | raleqbi1dv | |- ( z = C -> ( A. x e. z -. x e. ( N ` ( z \ { x } ) ) <-> A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) ) |
| 19 | 13 18 | anbi12d | |- ( z = C -> ( ( C C_ z /\ A. x e. z -. x e. ( N ` ( z \ { x } ) ) ) <-> ( C C_ C /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) ) ) |
| 20 | 19 7 | elrab2 | |- ( C e. S <-> ( C e. ~P V /\ ( C C_ C /\ A. x e. C -. x e. ( N ` ( C \ { x } ) ) ) ) ) |
| 21 | 10 12 20 | sylanbrc | |- ( ph -> C e. S ) |
| 22 | 21 | ne0d | |- ( ph -> S =/= (/) ) |