This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr . (Contributed by NM, 22-Feb-1996) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lt | |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cltrr | |- |
|
| 1 | vx | |- x |
|
| 2 | vy | |- y |
|
| 3 | 1 | cv | |- x |
| 4 | cr | |- RR |
|
| 5 | 3 4 | wcel | |- x e. RR |
| 6 | 2 | cv | |- y |
| 7 | 6 4 | wcel | |- y e. RR |
| 8 | 5 7 | wa | |- ( x e. RR /\ y e. RR ) |
| 9 | vz | |- z |
|
| 10 | vw | |- w |
|
| 11 | 9 | cv | |- z |
| 12 | c0r | |- 0R |
|
| 13 | 11 12 | cop | |- <. z , 0R >. |
| 14 | 3 13 | wceq | |- x = <. z , 0R >. |
| 15 | 10 | cv | |- w |
| 16 | 15 12 | cop | |- <. w , 0R >. |
| 17 | 6 16 | wceq | |- y = <. w , 0R >. |
| 18 | 14 17 | wa | |- ( x = <. z , 0R >. /\ y = <. w , 0R >. ) |
| 19 | cltr | |- |
|
| 20 | 11 15 19 | wbr | |- z |
| 21 | 18 20 | wa | |- ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 22 | 21 10 | wex | |- E. w ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 23 | 22 9 | wex | |- E. z E. w ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 24 | 8 23 | wa | |- ( ( x e. RR /\ y e. RR ) /\ E. z E. w ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 25 | 24 1 2 | copab | |- { <. x , y >. | ( ( x e. RR /\ y e. RR ) /\ E. z E. w ( ( x = <. z , 0R >. /\ y = <. w , 0R >. ) /\ z |
| 26 | 0 25 | wceq | |- |