This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: "Less than" is a relation on extended reals. (Contributed by Mario Carneiro, 28-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ltrelxr | |- < C_ ( RR* X. RR* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ltxr | |- < = ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
|
| 2 | df-3an | |- ( ( x e. RR /\ y e. RR /\ x |
|
| 3 | 2 | opabbii | |- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 4 | opabssxp | |- { <. x , y >. | ( ( x e. RR /\ y e. RR ) /\ x |
|
| 5 | 3 4 | eqsstri | |- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 6 | rexpssxrxp | |- ( RR X. RR ) C_ ( RR* X. RR* ) |
|
| 7 | 5 6 | sstri | |- { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 8 | ressxr | |- RR C_ RR* |
|
| 9 | snsspr2 | |- { -oo } C_ { +oo , -oo } |
|
| 10 | ssun2 | |- { +oo , -oo } C_ ( RR u. { +oo , -oo } ) |
|
| 11 | df-xr | |- RR* = ( RR u. { +oo , -oo } ) |
|
| 12 | 10 11 | sseqtrri | |- { +oo , -oo } C_ RR* |
| 13 | 9 12 | sstri | |- { -oo } C_ RR* |
| 14 | 8 13 | unssi | |- ( RR u. { -oo } ) C_ RR* |
| 15 | snsspr1 | |- { +oo } C_ { +oo , -oo } |
|
| 16 | 15 12 | sstri | |- { +oo } C_ RR* |
| 17 | xpss12 | |- ( ( ( RR u. { -oo } ) C_ RR* /\ { +oo } C_ RR* ) -> ( ( RR u. { -oo } ) X. { +oo } ) C_ ( RR* X. RR* ) ) |
|
| 18 | 14 16 17 | mp2an | |- ( ( RR u. { -oo } ) X. { +oo } ) C_ ( RR* X. RR* ) |
| 19 | xpss12 | |- ( ( { -oo } C_ RR* /\ RR C_ RR* ) -> ( { -oo } X. RR ) C_ ( RR* X. RR* ) ) |
|
| 20 | 13 8 19 | mp2an | |- ( { -oo } X. RR ) C_ ( RR* X. RR* ) |
| 21 | 18 20 | unssi | |- ( ( ( RR u. { -oo } ) X. { +oo } ) u. ( { -oo } X. RR ) ) C_ ( RR* X. RR* ) |
| 22 | 7 21 | unssi | |- ( { <. x , y >. | ( x e. RR /\ y e. RR /\ x |
| 23 | 1 22 | eqsstri | |- < C_ ( RR* X. RR* ) |