This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Glauco Siliprandi
Real intervals
ltnelicc
Metamath Proof Explorer
Description: A real number smaller than the lower bound of a closed interval is not
an element of the interval. (Contributed by Glauco Siliprandi , 11-Dec-2019)
Ref
Expression
Hypotheses
ltnelicc.a
⊢ φ → A ∈ ℝ
ltnelicc.b
⊢ φ → B ∈ ℝ *
ltnelicc.c
⊢ φ → C ∈ ℝ *
ltnelicc.clta
⊢ φ → C < A
Assertion
ltnelicc
⊢ φ → ¬ C ∈ A B
Proof
Step
Hyp
Ref
Expression
1
ltnelicc.a
⊢ φ → A ∈ ℝ
2
ltnelicc.b
⊢ φ → B ∈ ℝ *
3
ltnelicc.c
⊢ φ → C ∈ ℝ *
4
ltnelicc.clta
⊢ φ → C < A
5
1
rexrd
⊢ φ → A ∈ ℝ *
6
xrltnle
⊢ C ∈ ℝ * ∧ A ∈ ℝ * → C < A ↔ ¬ A ≤ C
7
3 5 6
syl2anc
⊢ φ → C < A ↔ ¬ A ≤ C
8
4 7
mpbid
⊢ φ → ¬ A ≤ C
9
8
intnanrd
⊢ φ → ¬ A ≤ C ∧ C ≤ B
10
elicc4
⊢ A ∈ ℝ * ∧ B ∈ ℝ * ∧ C ∈ ℝ * → C ∈ A B ↔ A ≤ C ∧ C ≤ B
11
5 2 3 10
syl3anc
⊢ φ → C ∈ A B ↔ A ≤ C ∧ C ≤ B
12
9 11
mtbird
⊢ φ → ¬ C ∈ A B