This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a well-order on the set of all finite bags from the index set i given a wellordering r of i . (Contributed by Mario Carneiro, 8-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-ltbag | |- |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cltb | |- |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | vi | |- i |
|
| 4 | vx | |- x |
|
| 5 | vy | |- y |
|
| 6 | 4 | cv | |- x |
| 7 | 5 | cv | |- y |
| 8 | 6 7 | cpr | |- { x , y } |
| 9 | vh | |- h |
|
| 10 | cn0 | |- NN0 |
|
| 11 | cmap | |- ^m |
|
| 12 | 3 | cv | |- i |
| 13 | 10 12 11 | co | |- ( NN0 ^m i ) |
| 14 | 9 | cv | |- h |
| 15 | 14 | ccnv | |- `' h |
| 16 | cn | |- NN |
|
| 17 | 15 16 | cima | |- ( `' h " NN ) |
| 18 | cfn | |- Fin |
|
| 19 | 17 18 | wcel | |- ( `' h " NN ) e. Fin |
| 20 | 19 9 13 | crab | |- { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
| 21 | 8 20 | wss | |- { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |
| 22 | vz | |- z |
|
| 23 | 22 | cv | |- z |
| 24 | 23 6 | cfv | |- ( x ` z ) |
| 25 | clt | |- < |
|
| 26 | 23 7 | cfv | |- ( y ` z ) |
| 27 | 24 26 25 | wbr | |- ( x ` z ) < ( y ` z ) |
| 28 | vw | |- w |
|
| 29 | 1 | cv | |- r |
| 30 | 28 | cv | |- w |
| 31 | 23 30 29 | wbr | |- z r w |
| 32 | 30 6 | cfv | |- ( x ` w ) |
| 33 | 30 7 | cfv | |- ( y ` w ) |
| 34 | 32 33 | wceq | |- ( x ` w ) = ( y ` w ) |
| 35 | 31 34 | wi | |- ( z r w -> ( x ` w ) = ( y ` w ) ) |
| 36 | 35 28 12 | wral | |- A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) |
| 37 | 27 36 | wa | |- ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) |
| 38 | 37 22 12 | wrex | |- E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) |
| 39 | 21 38 | wa | |- ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) |
| 40 | 39 4 5 | copab | |- { <. x , y >. | ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) } |
| 41 | 1 3 2 2 40 | cmpo | |- ( r e. _V , i e. _V |-> { <. x , y >. | ( { x , y } C_ { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } /\ E. z e. i ( ( x ` z ) < ( y ` z ) /\ A. w e. i ( z r w -> ( x ` w ) = ( y ` w ) ) ) ) } ) |
| 42 | 0 41 | wceq | |- |