This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Subtracting both sides of two 'less than' relations. (Contributed by Mario Carneiro, 14-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2sub | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ D < B ) -> ( A - B ) < ( C - D ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
|
| 2 | simprl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
|
| 3 | simplr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) |
|
| 4 | ltsub1 | |- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A < C <-> ( A - B ) < ( C - B ) ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A < C <-> ( A - B ) < ( C - B ) ) ) |
| 6 | simprr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
|
| 7 | ltsub2 | |- ( ( D e. RR /\ B e. RR /\ C e. RR ) -> ( D < B <-> ( C - B ) < ( C - D ) ) ) |
|
| 8 | 6 3 2 7 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( D < B <-> ( C - B ) < ( C - D ) ) ) |
| 9 | 5 8 | anbi12d | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ D < B ) <-> ( ( A - B ) < ( C - B ) /\ ( C - B ) < ( C - D ) ) ) ) |
| 10 | resubcl | |- ( ( A e. RR /\ B e. RR ) -> ( A - B ) e. RR ) |
|
| 11 | 10 | adantr | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A - B ) e. RR ) |
| 12 | 2 3 | resubcld | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C - B ) e. RR ) |
| 13 | resubcl | |- ( ( C e. RR /\ D e. RR ) -> ( C - D ) e. RR ) |
|
| 14 | 13 | adantl | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C - D ) e. RR ) |
| 15 | lttr | |- ( ( ( A - B ) e. RR /\ ( C - B ) e. RR /\ ( C - D ) e. RR ) -> ( ( ( A - B ) < ( C - B ) /\ ( C - B ) < ( C - D ) ) -> ( A - B ) < ( C - D ) ) ) |
|
| 16 | 11 12 14 15 | syl3anc | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A - B ) < ( C - B ) /\ ( C - B ) < ( C - D ) ) -> ( A - B ) < ( C - D ) ) ) |
| 17 | 9 16 | sylbid | |- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A < C /\ D < B ) -> ( A - B ) < ( C - D ) ) ) |