This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sum is less than the whole if each term is less than half. (Contributed by NM, 13-Dec-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lt2halves | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simpa | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A e. RR /\ B e. RR ) ) |
|
| 2 | rehalfcl | |- ( C e. RR -> ( C / 2 ) e. RR ) |
|
| 3 | 2 2 | jca | |- ( C e. RR -> ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) |
| 4 | 3 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) |
| 5 | lt2add | |- ( ( ( A e. RR /\ B e. RR ) /\ ( ( C / 2 ) e. RR /\ ( C / 2 ) e. RR ) ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) ) ) |
|
| 6 | 1 4 5 | syl2anc | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) ) ) |
| 7 | recn | |- ( C e. RR -> C e. CC ) |
|
| 8 | 2halves | |- ( C e. CC -> ( ( C / 2 ) + ( C / 2 ) ) = C ) |
|
| 9 | 7 8 | syl | |- ( C e. RR -> ( ( C / 2 ) + ( C / 2 ) ) = C ) |
| 10 | 9 | breq2d | |- ( C e. RR -> ( ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) <-> ( A + B ) < C ) ) |
| 11 | 10 | 3ad2ant3 | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) < ( ( C / 2 ) + ( C / 2 ) ) <-> ( A + B ) < C ) ) |
| 12 | 6 11 | sylibd | |- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A < ( C / 2 ) /\ B < ( C / 2 ) ) -> ( A + B ) < C ) ) |