This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Mapping of (nonempty) words commutes with the "last symbol" operation. This theorem would not hold if W = (/) , ( F(/) ) =/= (/) and (/) e. A , because then ( lastS( F o. W ) ) = ( lastS(/) ) = (/) =/= ( F(/) ) = ( F ( lastSW ) ) . (Contributed by AV, 11-Nov-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lswco | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( lastS ` ( F o. W ) ) = ( F ` ( lastS ` W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffun | |- ( F : A --> B -> Fun F ) |
|
| 2 | 1 | anim1i | |- ( ( F : A --> B /\ W e. Word A ) -> ( Fun F /\ W e. Word A ) ) |
| 3 | 2 | ancoms | |- ( ( W e. Word A /\ F : A --> B ) -> ( Fun F /\ W e. Word A ) ) |
| 4 | 3 | 3adant2 | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( Fun F /\ W e. Word A ) ) |
| 5 | cofunexg | |- ( ( Fun F /\ W e. Word A ) -> ( F o. W ) e. _V ) |
|
| 6 | lsw | |- ( ( F o. W ) e. _V -> ( lastS ` ( F o. W ) ) = ( ( F o. W ) ` ( ( # ` ( F o. W ) ) - 1 ) ) ) |
|
| 7 | 4 5 6 | 3syl | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( lastS ` ( F o. W ) ) = ( ( F o. W ) ` ( ( # ` ( F o. W ) ) - 1 ) ) ) |
| 8 | lenco | |- ( ( W e. Word A /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
|
| 9 | 8 | 3adant2 | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( # ` ( F o. W ) ) = ( # ` W ) ) |
| 10 | 9 | fvoveq1d | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( ( F o. W ) ` ( ( # ` ( F o. W ) ) - 1 ) ) = ( ( F o. W ) ` ( ( # ` W ) - 1 ) ) ) |
| 11 | wrdf | |- ( W e. Word A -> W : ( 0 ..^ ( # ` W ) ) --> A ) |
|
| 12 | 11 | adantr | |- ( ( W e. Word A /\ W =/= (/) ) -> W : ( 0 ..^ ( # ` W ) ) --> A ) |
| 13 | lennncl | |- ( ( W e. Word A /\ W =/= (/) ) -> ( # ` W ) e. NN ) |
|
| 14 | fzo0end | |- ( ( # ` W ) e. NN -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
|
| 15 | 13 14 | syl | |- ( ( W e. Word A /\ W =/= (/) ) -> ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) |
| 16 | 12 15 | jca | |- ( ( W e. Word A /\ W =/= (/) ) -> ( W : ( 0 ..^ ( # ` W ) ) --> A /\ ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 17 | 16 | 3adant3 | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( W : ( 0 ..^ ( # ` W ) ) --> A /\ ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) ) |
| 18 | fvco3 | |- ( ( W : ( 0 ..^ ( # ` W ) ) --> A /\ ( ( # ` W ) - 1 ) e. ( 0 ..^ ( # ` W ) ) ) -> ( ( F o. W ) ` ( ( # ` W ) - 1 ) ) = ( F ` ( W ` ( ( # ` W ) - 1 ) ) ) ) |
|
| 19 | 17 18 | syl | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( ( F o. W ) ` ( ( # ` W ) - 1 ) ) = ( F ` ( W ` ( ( # ` W ) - 1 ) ) ) ) |
| 20 | lsw | |- ( W e. Word A -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
|
| 21 | 20 | 3ad2ant1 | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( lastS ` W ) = ( W ` ( ( # ` W ) - 1 ) ) ) |
| 22 | 21 | eqcomd | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( W ` ( ( # ` W ) - 1 ) ) = ( lastS ` W ) ) |
| 23 | 22 | fveq2d | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( F ` ( W ` ( ( # ` W ) - 1 ) ) ) = ( F ` ( lastS ` W ) ) ) |
| 24 | 19 23 | eqtrd | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( ( F o. W ) ` ( ( # ` W ) - 1 ) ) = ( F ` ( lastS ` W ) ) ) |
| 25 | 7 10 24 | 3eqtrd | |- ( ( W e. Word A /\ W =/= (/) /\ F : A --> B ) -> ( lastS ` ( F o. W ) ) = ( F ` ( lastS ` W ) ) ) |