This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the set of linear subspaces of a left module or left vector space: a linear subspace of a left module or left vector space is a non-empty subset of the base set of the left module/vector space with a closure condition on vector addition and scalar multiplication. (Contributed by NM, 8-Dec-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lss | |- LSubSp = ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clss | |- LSubSp |
|
| 1 | vw | |- w |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | cbs | |- Base |
|
| 5 | 1 | cv | |- w |
| 6 | 5 4 | cfv | |- ( Base ` w ) |
| 7 | 6 | cpw | |- ~P ( Base ` w ) |
| 8 | c0 | |- (/) |
|
| 9 | 8 | csn | |- { (/) } |
| 10 | 7 9 | cdif | |- ( ~P ( Base ` w ) \ { (/) } ) |
| 11 | vx | |- x |
|
| 12 | csca | |- Scalar |
|
| 13 | 5 12 | cfv | |- ( Scalar ` w ) |
| 14 | 13 4 | cfv | |- ( Base ` ( Scalar ` w ) ) |
| 15 | va | |- a |
|
| 16 | 3 | cv | |- s |
| 17 | vb | |- b |
|
| 18 | 11 | cv | |- x |
| 19 | cvsca | |- .s |
|
| 20 | 5 19 | cfv | |- ( .s ` w ) |
| 21 | 15 | cv | |- a |
| 22 | 18 21 20 | co | |- ( x ( .s ` w ) a ) |
| 23 | cplusg | |- +g |
|
| 24 | 5 23 | cfv | |- ( +g ` w ) |
| 25 | 17 | cv | |- b |
| 26 | 22 25 24 | co | |- ( ( x ( .s ` w ) a ) ( +g ` w ) b ) |
| 27 | 26 16 | wcel | |- ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s |
| 28 | 27 17 16 | wral | |- A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s |
| 29 | 28 15 16 | wral | |- A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s |
| 30 | 29 11 14 | wral | |- A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s |
| 31 | 30 3 10 | crab | |- { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } |
| 32 | 1 2 31 | cmpt | |- ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) |
| 33 | 0 32 | wceq | |- LSubSp = ( w e. _V |-> { s e. ( ~P ( Base ` w ) \ { (/) } ) | A. x e. ( Base ` ( Scalar ` w ) ) A. a e. s A. b e. s ( ( x ( .s ` w ) a ) ( +g ` w ) b ) e. s } ) |