This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero subspace has a nonzero vector. ( shne0i analog.) (Contributed by NM, 20-Apr-2014) (Proof shortened by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0cl.z | |- .0. = ( 0g ` W ) |
|
| lss0cl.s | |- S = ( LSubSp ` W ) |
||
| Assertion | lssne0 | |- ( X e. S -> ( X =/= { .0. } <-> E. y e. X y =/= .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0cl.z | |- .0. = ( 0g ` W ) |
|
| 2 | lss0cl.s | |- S = ( LSubSp ` W ) |
|
| 3 | 2 | lssn0 | |- ( X e. S -> X =/= (/) ) |
| 4 | eqsn | |- ( X =/= (/) -> ( X = { .0. } <-> A. y e. X y = .0. ) ) |
|
| 5 | 3 4 | syl | |- ( X e. S -> ( X = { .0. } <-> A. y e. X y = .0. ) ) |
| 6 | nne | |- ( -. y =/= .0. <-> y = .0. ) |
|
| 7 | 6 | ralbii | |- ( A. y e. X -. y =/= .0. <-> A. y e. X y = .0. ) |
| 8 | ralnex | |- ( A. y e. X -. y =/= .0. <-> -. E. y e. X y =/= .0. ) |
|
| 9 | 7 8 | bitr3i | |- ( A. y e. X y = .0. <-> -. E. y e. X y =/= .0. ) |
| 10 | 5 9 | bitr2di | |- ( X e. S -> ( -. E. y e. X y =/= .0. <-> X = { .0. } ) ) |
| 11 | 10 | necon1abid | |- ( X e. S -> ( X =/= { .0. } <-> E. y e. X y =/= .0. ) ) |