This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonzero subspace has a nonzero vector. ( shne0i analog.) (Contributed by NM, 20-Apr-2014) (Proof shortened by Mario Carneiro, 8-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lss0cl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| lss0cl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lssne0 | ⊢ ( 𝑋 ∈ 𝑆 → ( 𝑋 ≠ { 0 } ↔ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lss0cl.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 2 | lss0cl.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | 2 | lssn0 | ⊢ ( 𝑋 ∈ 𝑆 → 𝑋 ≠ ∅ ) |
| 4 | eqsn | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 = { 0 } ↔ ∀ 𝑦 ∈ 𝑋 𝑦 = 0 ) ) | |
| 5 | 3 4 | syl | ⊢ ( 𝑋 ∈ 𝑆 → ( 𝑋 = { 0 } ↔ ∀ 𝑦 ∈ 𝑋 𝑦 = 0 ) ) |
| 6 | nne | ⊢ ( ¬ 𝑦 ≠ 0 ↔ 𝑦 = 0 ) | |
| 7 | 6 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ∀ 𝑦 ∈ 𝑋 𝑦 = 0 ) |
| 8 | ralnex | ⊢ ( ∀ 𝑦 ∈ 𝑋 ¬ 𝑦 ≠ 0 ↔ ¬ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ) | |
| 9 | 7 8 | bitr3i | ⊢ ( ∀ 𝑦 ∈ 𝑋 𝑦 = 0 ↔ ¬ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ) |
| 10 | 5 9 | bitr2di | ⊢ ( 𝑋 ∈ 𝑆 → ( ¬ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ↔ 𝑋 = { 0 } ) ) |
| 11 | 10 | necon1abid | ⊢ ( 𝑋 ∈ 𝑆 → ( 𝑋 ≠ { 0 } ↔ ∃ 𝑦 ∈ 𝑋 𝑦 ≠ 0 ) ) |