This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Span of the singleton is the zero subspace iff the vector is zero. (Contributed by NM, 27-Apr-2014) (Revised by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lspsneq0.v | |- V = ( Base ` W ) |
|
| lspsneq0.z | |- .0. = ( 0g ` W ) |
||
| lspsneq0.n | |- N = ( LSpan ` W ) |
||
| Assertion | lspsneq0 | |- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspsneq0.v | |- V = ( Base ` W ) |
|
| 2 | lspsneq0.z | |- .0. = ( 0g ` W ) |
|
| 3 | lspsneq0.n | |- N = ( LSpan ` W ) |
|
| 4 | 1 3 | lspsnid | |- ( ( W e. LMod /\ X e. V ) -> X e. ( N ` { X } ) ) |
| 5 | eleq2 | |- ( ( N ` { X } ) = { .0. } -> ( X e. ( N ` { X } ) <-> X e. { .0. } ) ) |
|
| 6 | 4 5 | syl5ibcom | |- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } -> X e. { .0. } ) ) |
| 7 | elsni | |- ( X e. { .0. } -> X = .0. ) |
|
| 8 | 6 7 | syl6 | |- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } -> X = .0. ) ) |
| 9 | 2 3 | lspsn0 | |- ( W e. LMod -> ( N ` { .0. } ) = { .0. } ) |
| 10 | 9 | adantr | |- ( ( W e. LMod /\ X e. V ) -> ( N ` { .0. } ) = { .0. } ) |
| 11 | sneq | |- ( X = .0. -> { X } = { .0. } ) |
|
| 12 | 11 | fveqeq2d | |- ( X = .0. -> ( ( N ` { X } ) = { .0. } <-> ( N ` { .0. } ) = { .0. } ) ) |
| 13 | 10 12 | syl5ibrcom | |- ( ( W e. LMod /\ X e. V ) -> ( X = .0. -> ( N ` { X } ) = { .0. } ) ) |
| 14 | 8 13 | impbid | |- ( ( W e. LMod /\ X e. V ) -> ( ( N ` { X } ) = { .0. } <-> X = .0. ) ) |