This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Modular law dual for subgroup sum. Similar to part of Theorem 16.9 of MaedaMaeda p. 70. (Contributed by NM, 8-Jan-2015) (Revised by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmmod.p | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmmod2 | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( S i^i ( T .(+) U ) ) = ( ( S i^i T ) .(+) U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmmod.p | |- .(+) = ( LSSum ` G ) |
|
| 2 | simpl3 | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U e. ( SubGrp ` G ) ) |
|
| 3 | eqid | |- ( oppG ` G ) = ( oppG ` G ) |
|
| 4 | 3 | oppgsubg | |- ( SubGrp ` G ) = ( SubGrp ` ( oppG ` G ) ) |
| 5 | 2 4 | eleqtrdi | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U e. ( SubGrp ` ( oppG ` G ) ) ) |
| 6 | simpl2 | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> T e. ( SubGrp ` G ) ) |
|
| 7 | 6 4 | eleqtrdi | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> T e. ( SubGrp ` ( oppG ` G ) ) ) |
| 8 | simpl1 | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> S e. ( SubGrp ` G ) ) |
|
| 9 | 8 4 | eleqtrdi | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> S e. ( SubGrp ` ( oppG ` G ) ) ) |
| 10 | simpr | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> U C_ S ) |
|
| 11 | eqid | |- ( LSSum ` ( oppG ` G ) ) = ( LSSum ` ( oppG ` G ) ) |
|
| 12 | 11 | lsmmod | |- ( ( ( U e. ( SubGrp ` ( oppG ` G ) ) /\ T e. ( SubGrp ` ( oppG ` G ) ) /\ S e. ( SubGrp ` ( oppG ` G ) ) ) /\ U C_ S ) -> ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) ) |
| 13 | 5 7 9 10 12 | syl31anc | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) ) |
| 14 | 13 | eqcomd | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) ) |
| 15 | incom | |- ( ( U ( LSSum ` ( oppG ` G ) ) T ) i^i S ) = ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) ) |
|
| 16 | incom | |- ( T i^i S ) = ( S i^i T ) |
|
| 17 | 16 | oveq2i | |- ( U ( LSSum ` ( oppG ` G ) ) ( T i^i S ) ) = ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) ) |
| 18 | 14 15 17 | 3eqtr3g | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) ) = ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) ) ) |
| 19 | 3 1 | oppglsm | |- ( U ( LSSum ` ( oppG ` G ) ) T ) = ( T .(+) U ) |
| 20 | 19 | ineq2i | |- ( S i^i ( U ( LSSum ` ( oppG ` G ) ) T ) ) = ( S i^i ( T .(+) U ) ) |
| 21 | 3 1 | oppglsm | |- ( U ( LSSum ` ( oppG ` G ) ) ( S i^i T ) ) = ( ( S i^i T ) .(+) U ) |
| 22 | 18 20 21 | 3eqtr3g | |- ( ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ U C_ S ) -> ( S i^i ( T .(+) U ) ) = ( ( S i^i T ) .(+) U ) ) |