This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A loop (which is an edge at index J ) induces a cycle of length 1 in a hypergraph. (Contributed by AV, 2-Feb-2021) (Proof shortened by AV, 30-Oct-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lppthon.i | |- I = ( iEdg ` G ) |
|
| Assertion | lp1cycl | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( Cycles ` G ) <" A A "> ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lppthon.i | |- I = ( iEdg ` G ) |
|
| 2 | 1 | lppthon | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( A ( PathsOn ` G ) A ) <" A A "> ) |
| 3 | pthonispth | |- ( <" J "> ( A ( PathsOn ` G ) A ) <" A A "> -> <" J "> ( Paths ` G ) <" A A "> ) |
|
| 4 | 2 3 | syl | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( Paths ` G ) <" A A "> ) |
| 5 | 1 | lpvtx | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> A e. ( Vtx ` G ) ) |
| 6 | s2fv1 | |- ( A e. ( Vtx ` G ) -> ( <" A A "> ` 1 ) = A ) |
|
| 7 | s1len | |- ( # ` <" J "> ) = 1 |
|
| 8 | 7 | fveq2i | |- ( <" A A "> ` ( # ` <" J "> ) ) = ( <" A A "> ` 1 ) |
| 9 | 8 | a1i | |- ( A e. ( Vtx ` G ) -> ( <" A A "> ` ( # ` <" J "> ) ) = ( <" A A "> ` 1 ) ) |
| 10 | s2fv0 | |- ( A e. ( Vtx ` G ) -> ( <" A A "> ` 0 ) = A ) |
|
| 11 | 6 9 10 | 3eqtr4rd | |- ( A e. ( Vtx ` G ) -> ( <" A A "> ` 0 ) = ( <" A A "> ` ( # ` <" J "> ) ) ) |
| 12 | 5 11 | syl | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> ( <" A A "> ` 0 ) = ( <" A A "> ` ( # ` <" J "> ) ) ) |
| 13 | iscycl | |- ( <" J "> ( Cycles ` G ) <" A A "> <-> ( <" J "> ( Paths ` G ) <" A A "> /\ ( <" A A "> ` 0 ) = ( <" A A "> ` ( # ` <" J "> ) ) ) ) |
|
| 14 | 4 12 13 | sylanbrc | |- ( ( G e. UHGraph /\ J e. dom I /\ ( I ` J ) = { A } ) -> <" J "> ( Cycles ` G ) <" A A "> ) |