This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the logarithm of a number is 0, the number must be 1. (Contributed by David A. Wheeler, 22-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logeq0im1 | |- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> A = 1 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eflog | |- ( ( A e. CC /\ A =/= 0 ) -> ( exp ` ( log ` A ) ) = A ) |
|
| 2 | 1 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> ( exp ` ( log ` A ) ) = A ) |
| 3 | fveq2 | |- ( ( log ` A ) = 0 -> ( exp ` ( log ` A ) ) = ( exp ` 0 ) ) |
|
| 4 | ef0 | |- ( exp ` 0 ) = 1 |
|
| 5 | 3 4 | eqtrdi | |- ( ( log ` A ) = 0 -> ( exp ` ( log ` A ) ) = 1 ) |
| 6 | 5 | 3ad2ant3 | |- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> ( exp ` ( log ` A ) ) = 1 ) |
| 7 | 2 6 | eqtr3d | |- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> A = 1 ) |