This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The logarithm isn't 0 if its argument isn't 0 or 1. (Contributed by David A. Wheeler, 17-Jul-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | logccne0 | |- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) =/= 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 | |- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> A =/= 1 ) |
|
| 2 | 1 | neneqd | |- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -. A = 1 ) |
| 3 | logeq0im1 | |- ( ( A e. CC /\ A =/= 0 /\ ( log ` A ) = 0 ) -> A = 1 ) |
|
| 4 | 3 | 3expia | |- ( ( A e. CC /\ A =/= 0 ) -> ( ( log ` A ) = 0 -> A = 1 ) ) |
| 5 | 4 | 3adant3 | |- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( ( log ` A ) = 0 -> A = 1 ) ) |
| 6 | 2 5 | mtod | |- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> -. ( log ` A ) = 0 ) |
| 7 | 6 | neqned | |- ( ( A e. CC /\ A =/= 0 /\ A =/= 1 ) -> ( log ` A ) =/= 0 ) |