This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of an eventually upper bounded function and a positive eventually upper bounded function is eventually upper bounded. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1add2.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| o1add2.2 | |- ( ( ph /\ x e. A ) -> C e. V ) |
||
| lo1add.3 | |- ( ph -> ( x e. A |-> B ) e. <_O(1) ) |
||
| lo1add.4 | |- ( ph -> ( x e. A |-> C ) e. <_O(1) ) |
||
| lo1mul.5 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
||
| Assertion | lo1mul2 | |- ( ph -> ( x e. A |-> ( C x. B ) ) e. <_O(1) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1add2.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | o1add2.2 | |- ( ( ph /\ x e. A ) -> C e. V ) |
|
| 3 | lo1add.3 | |- ( ph -> ( x e. A |-> B ) e. <_O(1) ) |
|
| 4 | lo1add.4 | |- ( ph -> ( x e. A |-> C ) e. <_O(1) ) |
|
| 5 | lo1mul.5 | |- ( ( ph /\ x e. A ) -> 0 <_ B ) |
|
| 6 | 2 4 | lo1mptrcl | |- ( ( ph /\ x e. A ) -> C e. RR ) |
| 7 | 6 | recnd | |- ( ( ph /\ x e. A ) -> C e. CC ) |
| 8 | 1 3 | lo1mptrcl | |- ( ( ph /\ x e. A ) -> B e. RR ) |
| 9 | 8 | recnd | |- ( ( ph /\ x e. A ) -> B e. CC ) |
| 10 | 7 9 | mulcomd | |- ( ( ph /\ x e. A ) -> ( C x. B ) = ( B x. C ) ) |
| 11 | 10 | mpteq2dva | |- ( ph -> ( x e. A |-> ( C x. B ) ) = ( x e. A |-> ( B x. C ) ) ) |
| 12 | 1 2 3 4 5 | lo1mul | |- ( ph -> ( x e. A |-> ( B x. C ) ) e. <_O(1) ) |
| 13 | 11 12 | eqeltrd | |- ( ph -> ( x e. A |-> ( C x. B ) ) e. <_O(1) ) |