This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reverse closure for an eventually upper bounded function. (Contributed by Mario Carneiro, 26-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | o1add2.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| lo1mptrcl.3 | |- ( ph -> ( x e. A |-> B ) e. <_O(1) ) |
||
| Assertion | lo1mptrcl | |- ( ( ph /\ x e. A ) -> B e. RR ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | o1add2.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | lo1mptrcl.3 | |- ( ph -> ( x e. A |-> B ) e. <_O(1) ) |
|
| 3 | lo1f | |- ( ( x e. A |-> B ) e. <_O(1) -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) |
|
| 4 | 2 3 | syl | |- ( ph -> ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR ) |
| 5 | 1 | ralrimiva | |- ( ph -> A. x e. A B e. V ) |
| 6 | dmmptg | |- ( A. x e. A B e. V -> dom ( x e. A |-> B ) = A ) |
|
| 7 | 5 6 | syl | |- ( ph -> dom ( x e. A |-> B ) = A ) |
| 8 | 7 | feq2d | |- ( ph -> ( ( x e. A |-> B ) : dom ( x e. A |-> B ) --> RR <-> ( x e. A |-> B ) : A --> RR ) ) |
| 9 | 4 8 | mpbid | |- ( ph -> ( x e. A |-> B ) : A --> RR ) |
| 10 | 9 | fvmptelcdm | |- ( ( ph /\ x e. A ) -> B e. RR ) |