This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Additive property of a linear Hilbert space functional. (Contributed by NM, 11-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnfnl.1 | |- T e. LinFn |
|
| Assertion | lnfnaddi | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) + ( T ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnfnl.1 | |- T e. LinFn |
|
| 2 | ax-1cn | |- 1 e. CC |
|
| 3 | 1 | lnfnli | |- ( ( 1 e. CC /\ A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( ( 1 x. ( T ` A ) ) + ( T ` B ) ) ) |
| 4 | 2 3 | mp3an1 | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( ( 1 x. ( T ` A ) ) + ( T ` B ) ) ) |
| 5 | ax-hvmulid | |- ( A e. ~H -> ( 1 .h A ) = A ) |
|
| 6 | 5 | fvoveq1d | |- ( A e. ~H -> ( T ` ( ( 1 .h A ) +h B ) ) = ( T ` ( A +h B ) ) ) |
| 7 | 6 | adantr | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( ( 1 .h A ) +h B ) ) = ( T ` ( A +h B ) ) ) |
| 8 | 1 | lnfnfi | |- T : ~H --> CC |
| 9 | 8 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. CC ) |
| 10 | 9 | mullidd | |- ( A e. ~H -> ( 1 x. ( T ` A ) ) = ( T ` A ) ) |
| 11 | 10 | adantr | |- ( ( A e. ~H /\ B e. ~H ) -> ( 1 x. ( T ` A ) ) = ( T ` A ) ) |
| 12 | 11 | oveq1d | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( 1 x. ( T ` A ) ) + ( T ` B ) ) = ( ( T ` A ) + ( T ` B ) ) ) |
| 13 | 4 7 12 | 3eqtr3d | |- ( ( A e. ~H /\ B e. ~H ) -> ( T ` ( A +h B ) ) = ( ( T ` A ) + ( T ` B ) ) ) |