This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distribute negation through addition of scalar products. (Contributed by NM, 9-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmodnegadd.v | |- V = ( Base ` W ) |
|
| lmodnegadd.p | |- .+ = ( +g ` W ) |
||
| lmodnegadd.t | |- .x. = ( .s ` W ) |
||
| lmodnegadd.n | |- N = ( invg ` W ) |
||
| lmodnegadd.r | |- R = ( Scalar ` W ) |
||
| lmodnegadd.k | |- K = ( Base ` R ) |
||
| lmodnegadd.i | |- I = ( invg ` R ) |
||
| lmodnegadd.w | |- ( ph -> W e. LMod ) |
||
| lmodnegadd.a | |- ( ph -> A e. K ) |
||
| lmodnegadd.b | |- ( ph -> B e. K ) |
||
| lmodnegadd.x | |- ( ph -> X e. V ) |
||
| lmodnegadd.y | |- ( ph -> Y e. V ) |
||
| Assertion | lmodnegadd | |- ( ph -> ( N ` ( ( A .x. X ) .+ ( B .x. Y ) ) ) = ( ( ( I ` A ) .x. X ) .+ ( ( I ` B ) .x. Y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmodnegadd.v | |- V = ( Base ` W ) |
|
| 2 | lmodnegadd.p | |- .+ = ( +g ` W ) |
|
| 3 | lmodnegadd.t | |- .x. = ( .s ` W ) |
|
| 4 | lmodnegadd.n | |- N = ( invg ` W ) |
|
| 5 | lmodnegadd.r | |- R = ( Scalar ` W ) |
|
| 6 | lmodnegadd.k | |- K = ( Base ` R ) |
|
| 7 | lmodnegadd.i | |- I = ( invg ` R ) |
|
| 8 | lmodnegadd.w | |- ( ph -> W e. LMod ) |
|
| 9 | lmodnegadd.a | |- ( ph -> A e. K ) |
|
| 10 | lmodnegadd.b | |- ( ph -> B e. K ) |
|
| 11 | lmodnegadd.x | |- ( ph -> X e. V ) |
|
| 12 | lmodnegadd.y | |- ( ph -> Y e. V ) |
|
| 13 | lmodabl | |- ( W e. LMod -> W e. Abel ) |
|
| 14 | 8 13 | syl | |- ( ph -> W e. Abel ) |
| 15 | 1 5 3 6 | lmodvscl | |- ( ( W e. LMod /\ A e. K /\ X e. V ) -> ( A .x. X ) e. V ) |
| 16 | 8 9 11 15 | syl3anc | |- ( ph -> ( A .x. X ) e. V ) |
| 17 | 1 5 3 6 | lmodvscl | |- ( ( W e. LMod /\ B e. K /\ Y e. V ) -> ( B .x. Y ) e. V ) |
| 18 | 8 10 12 17 | syl3anc | |- ( ph -> ( B .x. Y ) e. V ) |
| 19 | 1 2 4 | ablinvadd | |- ( ( W e. Abel /\ ( A .x. X ) e. V /\ ( B .x. Y ) e. V ) -> ( N ` ( ( A .x. X ) .+ ( B .x. Y ) ) ) = ( ( N ` ( A .x. X ) ) .+ ( N ` ( B .x. Y ) ) ) ) |
| 20 | 14 16 18 19 | syl3anc | |- ( ph -> ( N ` ( ( A .x. X ) .+ ( B .x. Y ) ) ) = ( ( N ` ( A .x. X ) ) .+ ( N ` ( B .x. Y ) ) ) ) |
| 21 | 1 5 3 4 6 7 8 11 9 | lmodvsneg | |- ( ph -> ( N ` ( A .x. X ) ) = ( ( I ` A ) .x. X ) ) |
| 22 | 1 5 3 4 6 7 8 12 10 | lmodvsneg | |- ( ph -> ( N ` ( B .x. Y ) ) = ( ( I ` B ) .x. Y ) ) |
| 23 | 21 22 | oveq12d | |- ( ph -> ( ( N ` ( A .x. X ) ) .+ ( N ` ( B .x. Y ) ) ) = ( ( ( I ` A ) .x. X ) .+ ( ( I ` B ) .x. Y ) ) ) |
| 24 | 20 23 | eqtrd | |- ( ph -> ( N ` ( ( A .x. X ) .+ ( B .x. Y ) ) ) = ( ( ( I ` A ) .x. X ) .+ ( ( I ` B ) .x. Y ) ) ) |