This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define set of all projective lines for a Hilbert lattice (actually in any set at all, for simplicity). The join of two distinct atoms equals a line. Definition of lines in item 1 of Holland95 p. 222. (Contributed by NM, 19-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-lines | |- Lines = ( k e. _V |-> { s | E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clines | |- Lines |
|
| 1 | vk | |- k |
|
| 2 | cvv | |- _V |
|
| 3 | vs | |- s |
|
| 4 | vq | |- q |
|
| 5 | catm | |- Atoms |
|
| 6 | 1 | cv | |- k |
| 7 | 6 5 | cfv | |- ( Atoms ` k ) |
| 8 | vr | |- r |
|
| 9 | 4 | cv | |- q |
| 10 | 8 | cv | |- r |
| 11 | 9 10 | wne | |- q =/= r |
| 12 | 3 | cv | |- s |
| 13 | vp | |- p |
|
| 14 | 13 | cv | |- p |
| 15 | cple | |- le |
|
| 16 | 6 15 | cfv | |- ( le ` k ) |
| 17 | cjn | |- join |
|
| 18 | 6 17 | cfv | |- ( join ` k ) |
| 19 | 9 10 18 | co | |- ( q ( join ` k ) r ) |
| 20 | 14 19 16 | wbr | |- p ( le ` k ) ( q ( join ` k ) r ) |
| 21 | 20 13 7 | crab | |- { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } |
| 22 | 12 21 | wceq | |- s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } |
| 23 | 11 22 | wa | |- ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) |
| 24 | 23 8 7 | wrex | |- E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) |
| 25 | 24 4 7 | wrex | |- E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) |
| 26 | 25 3 | cab | |- { s | E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) } |
| 27 | 1 2 26 | cmpt | |- ( k e. _V |-> { s | E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) } ) |
| 28 | 0 27 | wceq | |- Lines = ( k e. _V |-> { s | E. q e. ( Atoms ` k ) E. r e. ( Atoms ` k ) ( q =/= r /\ s = { p e. ( Atoms ` k ) | p ( le ` k ) ( q ( join ` k ) r ) } ) } ) |