This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the superior limit of an infinite sequence of extended real numbers. Definition 12-4.1 of Gleason p. 175. See limsupval for its value. (Contributed by NM, 26-Oct-2005) (Revised by AV, 11-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-limsup | |- limsup = ( x e. _V |-> inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | clsp | |- limsup |
|
| 1 | vx | |- x |
|
| 2 | cvv | |- _V |
|
| 3 | vk | |- k |
|
| 4 | cr | |- RR |
|
| 5 | 1 | cv | |- x |
| 6 | 3 | cv | |- k |
| 7 | cico | |- [,) |
|
| 8 | cpnf | |- +oo |
|
| 9 | 6 8 7 | co | |- ( k [,) +oo ) |
| 10 | 5 9 | cima | |- ( x " ( k [,) +oo ) ) |
| 11 | cxr | |- RR* |
|
| 12 | 10 11 | cin | |- ( ( x " ( k [,) +oo ) ) i^i RR* ) |
| 13 | clt | |- < |
|
| 14 | 12 11 13 | csup | |- sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) |
| 15 | 3 4 14 | cmpt | |- ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 16 | 15 | crn | |- ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) |
| 17 | 16 11 13 | cinf | |- inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) |
| 18 | 1 2 17 | cmpt | |- ( x e. _V |-> inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |
| 19 | 0 18 | wceq | |- limsup = ( x e. _V |-> inf ( ran ( k e. RR |-> sup ( ( ( x " ( k [,) +oo ) ) i^i RR* ) , RR* , < ) ) , RR* , < ) ) |