This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a loop-free graph, each walk has no loops! (Contributed by AV, 2-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfgrwlkprop.i | |- I = ( iEdg ` G ) |
|
| lfgriswlk.v | |- V = ( Vtx ` G ) |
||
| Assertion | lfgrwlknloop | |- ( ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfgrwlkprop.i | |- I = ( iEdg ` G ) |
|
| 2 | lfgriswlk.v | |- V = ( Vtx ` G ) |
|
| 3 | wlkv | |- ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) |
|
| 4 | 1 2 | lfgriswlk | |- ( ( G e. _V /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) |
| 5 | simpl | |- ( ( ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
|
| 6 | 5 | ralimi | |- ( A. k e. ( 0 ..^ ( # ` F ) ) ( ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 7 | 6 | 3ad2ant3 | |- ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> V /\ A. k e. ( 0 ..^ ( # ` F ) ) ( ( P ` k ) =/= ( P ` ( k + 1 ) ) /\ { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |
| 8 | 4 7 | biimtrdi | |- ( ( G e. _V /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 9 | 8 | ex | |- ( G e. _V -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( F ( Walks ` G ) P -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 10 | 9 | com23 | |- ( G e. _V -> ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 11 | 10 | 3ad2ant1 | |- ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) |
| 12 | 3 11 | mpcom | |- ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) |
| 13 | 12 | impcom | |- ( ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } /\ F ( Walks ` G ) P ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |