This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
| ltnegd.2 | |- ( ph -> B e. RR ) |
||
| ltadd1d.3 | |- ( ph -> C e. RR ) |
||
| lesub3d.x | |- ( ph -> X e. RR ) |
||
| lesub3d.g | |- ( ph -> ( X + C ) <_ A ) |
||
| lesub3d.l | |- ( ph -> B <_ X ) |
||
| Assertion | lesub3d | |- ( ph -> C <_ ( A - B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltadd1d.3 | |- ( ph -> C e. RR ) |
|
| 4 | lesub3d.x | |- ( ph -> X e. RR ) |
|
| 5 | lesub3d.g | |- ( ph -> ( X + C ) <_ A ) |
|
| 6 | lesub3d.l | |- ( ph -> B <_ X ) |
|
| 7 | 3 2 | readdcld | |- ( ph -> ( C + B ) e. RR ) |
| 8 | 4 3 | readdcld | |- ( ph -> ( X + C ) e. RR ) |
| 9 | 3 | recnd | |- ( ph -> C e. CC ) |
| 10 | 2 | recnd | |- ( ph -> B e. CC ) |
| 11 | 9 10 | addcomd | |- ( ph -> ( C + B ) = ( B + C ) ) |
| 12 | 2 4 3 6 | leadd1dd | |- ( ph -> ( B + C ) <_ ( X + C ) ) |
| 13 | 11 12 | eqbrtrd | |- ( ph -> ( C + B ) <_ ( X + C ) ) |
| 14 | 7 8 1 13 5 | letrd | |- ( ph -> ( C + B ) <_ A ) |
| 15 | leaddsub | |- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C + B ) <_ A <-> C <_ ( A - B ) ) ) |
|
| 16 | 3 2 1 15 | syl3anc | |- ( ph -> ( ( C + B ) <_ A <-> C <_ ( A - B ) ) ) |
| 17 | 14 16 | mpbid | |- ( ph -> C <_ ( A - B ) ) |