This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The result of subtracting a number less than or equal to an intermediate number from a number greater than or equal to a third number increased by the intermediate number is greater than or equal to the third number. (Contributed by AV, 13-Aug-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | ||
| ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| lesub3d.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | ||
| lesub3d.g | ⊢ ( 𝜑 → ( 𝑋 + 𝐶 ) ≤ 𝐴 ) | ||
| lesub3d.l | ⊢ ( 𝜑 → 𝐵 ≤ 𝑋 ) | ||
| Assertion | lesub3d | ⊢ ( 𝜑 → 𝐶 ≤ ( 𝐴 − 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ ) | |
| 2 | ltnegd.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℝ ) | |
| 3 | ltadd1d.3 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 4 | lesub3d.x | ⊢ ( 𝜑 → 𝑋 ∈ ℝ ) | |
| 5 | lesub3d.g | ⊢ ( 𝜑 → ( 𝑋 + 𝐶 ) ≤ 𝐴 ) | |
| 6 | lesub3d.l | ⊢ ( 𝜑 → 𝐵 ≤ 𝑋 ) | |
| 7 | 3 2 | readdcld | ⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ∈ ℝ ) |
| 8 | 4 3 | readdcld | ⊢ ( 𝜑 → ( 𝑋 + 𝐶 ) ∈ ℝ ) |
| 9 | 3 | recnd | ⊢ ( 𝜑 → 𝐶 ∈ ℂ ) |
| 10 | 2 | recnd | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
| 11 | 9 10 | addcomd | ⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) = ( 𝐵 + 𝐶 ) ) |
| 12 | 2 4 3 6 | leadd1dd | ⊢ ( 𝜑 → ( 𝐵 + 𝐶 ) ≤ ( 𝑋 + 𝐶 ) ) |
| 13 | 11 12 | eqbrtrd | ⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ≤ ( 𝑋 + 𝐶 ) ) |
| 14 | 7 8 1 13 5 | letrd | ⊢ ( 𝜑 → ( 𝐶 + 𝐵 ) ≤ 𝐴 ) |
| 15 | leaddsub | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 𝐶 + 𝐵 ) ≤ 𝐴 ↔ 𝐶 ≤ ( 𝐴 − 𝐵 ) ) ) | |
| 16 | 3 2 1 15 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐶 + 𝐵 ) ≤ 𝐴 ↔ 𝐶 ≤ ( 𝐴 − 𝐵 ) ) ) |
| 17 | 14 16 | mpbid | ⊢ ( 𝜑 → 𝐶 ≤ ( 𝐴 − 𝐵 ) ) |