This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the _lcm function. (Contributed by AV, 20-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfnncl | |- ( ( Z C_ NN /\ Z e. Fin ) -> ( _lcm ` Z ) e. NN ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( Z C_ NN -> Z C_ NN ) |
|
| 2 | nnssz | |- NN C_ ZZ |
|
| 3 | 1 2 | sstrdi | |- ( Z C_ NN -> Z C_ ZZ ) |
| 4 | 3 | adantr | |- ( ( Z C_ NN /\ Z e. Fin ) -> Z C_ ZZ ) |
| 5 | simpr | |- ( ( Z C_ NN /\ Z e. Fin ) -> Z e. Fin ) |
|
| 6 | 0nnn | |- -. 0 e. NN |
|
| 7 | ssel | |- ( Z C_ NN -> ( 0 e. Z -> 0 e. NN ) ) |
|
| 8 | 6 7 | mtoi | |- ( Z C_ NN -> -. 0 e. Z ) |
| 9 | df-nel | |- ( 0 e/ Z <-> -. 0 e. Z ) |
|
| 10 | 8 9 | sylibr | |- ( Z C_ NN -> 0 e/ Z ) |
| 11 | 10 | adantr | |- ( ( Z C_ NN /\ Z e. Fin ) -> 0 e/ Z ) |
| 12 | lcmfn0cl | |- ( ( Z C_ ZZ /\ Z e. Fin /\ 0 e/ Z ) -> ( _lcm ` Z ) e. NN ) |
|
| 13 | 4 5 11 12 | syl3anc | |- ( ( Z C_ NN /\ Z e. Fin ) -> ( _lcm ` Z ) e. NN ) |