This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the _lcm function. (Contributed by AV, 20-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmfnncl | ⊢ ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | ⊢ ( 𝑍 ⊆ ℕ → 𝑍 ⊆ ℕ ) | |
| 2 | nnssz | ⊢ ℕ ⊆ ℤ | |
| 3 | 1 2 | sstrdi | ⊢ ( 𝑍 ⊆ ℕ → 𝑍 ⊆ ℤ ) |
| 4 | 3 | adantr | ⊢ ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → 𝑍 ⊆ ℤ ) |
| 5 | simpr | ⊢ ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → 𝑍 ∈ Fin ) | |
| 6 | 0nnn | ⊢ ¬ 0 ∈ ℕ | |
| 7 | ssel | ⊢ ( 𝑍 ⊆ ℕ → ( 0 ∈ 𝑍 → 0 ∈ ℕ ) ) | |
| 8 | 6 7 | mtoi | ⊢ ( 𝑍 ⊆ ℕ → ¬ 0 ∈ 𝑍 ) |
| 9 | df-nel | ⊢ ( 0 ∉ 𝑍 ↔ ¬ 0 ∈ 𝑍 ) | |
| 10 | 8 9 | sylibr | ⊢ ( 𝑍 ⊆ ℕ → 0 ∉ 𝑍 ) |
| 11 | 10 | adantr | ⊢ ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → 0 ∉ 𝑍 ) |
| 12 | lcmfn0cl | ⊢ ( ( 𝑍 ⊆ ℤ ∧ 𝑍 ∈ Fin ∧ 0 ∉ 𝑍 ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) | |
| 13 | 4 5 11 12 | syl3anc | ⊢ ( ( 𝑍 ⊆ ℕ ∧ 𝑍 ∈ Fin ) → ( lcm ‘ 𝑍 ) ∈ ℕ ) |