This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The join of a poset is commutative. (The antecedent <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ i.e., "the joins exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joincom.b | |- B = ( Base ` K ) |
|
| joincom.j | |- .\/ = ( join ` K ) |
||
| Assertion | joincom | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joincom.b | |- B = ( Base ` K ) |
|
| 2 | joincom.j | |- .\/ = ( join ` K ) |
|
| 3 | 1 2 | joincomALT | |- ( ( K e. Poset /\ X e. B /\ Y e. B ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |
| 4 | 3 | adantr | |- ( ( ( K e. Poset /\ X e. B /\ Y e. B ) /\ ( <. X , Y >. e. dom .\/ /\ <. Y , X >. e. dom .\/ ) ) -> ( X .\/ Y ) = ( Y .\/ X ) ) |