This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a commuted bra and ket juxtaposition used by Dirac notation. In Dirac notation, | A >. <. B | is an operator known as the outer product of A and B , which we represent by ( A ketbra B ) . Based on Equation 8.1 of Prugovecki p. 376. This definition, combined with Definition df-bra , allows any legal juxtaposition of bras and kets to make sense formally and also to obey the associative law when mapped back to Dirac notation. (Contributed by NM, 15-May-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-kb | |- ketbra = ( x e. ~H , y e. ~H |-> ( z e. ~H |-> ( ( z .ih y ) .h x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ck | |- ketbra |
|
| 1 | vx | |- x |
|
| 2 | chba | |- ~H |
|
| 3 | vy | |- y |
|
| 4 | vz | |- z |
|
| 5 | 4 | cv | |- z |
| 6 | csp | |- .ih |
|
| 7 | 3 | cv | |- y |
| 8 | 5 7 6 | co | |- ( z .ih y ) |
| 9 | csm | |- .h |
|
| 10 | 1 | cv | |- x |
| 11 | 8 10 9 | co | |- ( ( z .ih y ) .h x ) |
| 12 | 4 2 11 | cmpt | |- ( z e. ~H |-> ( ( z .ih y ) .h x ) ) |
| 13 | 1 3 2 2 12 | cmpo | |- ( x e. ~H , y e. ~H |-> ( z e. ~H |-> ( ( z .ih y ) .h x ) ) ) |
| 14 | 0 13 | wceq | |- ketbra = ( x e. ~H , y e. ~H |-> ( z e. ~H |-> ( ( z .ih y ) .h x ) ) ) |