This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for joinval2 and joineu . (Contributed by NM, 12-Sep-2018) TODO: combine this through joineu into joinlem ?
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinval2.b | |- B = ( Base ` K ) |
|
| joinval2.l | |- .<_ = ( le ` K ) |
||
| joinval2.j | |- .\/ = ( join ` K ) |
||
| joinval2.k | |- ( ph -> K e. V ) |
||
| joinval2.x | |- ( ph -> X e. B ) |
||
| joinval2.y | |- ( ph -> Y e. B ) |
||
| Assertion | joinval2lem | |- ( ( X e. B /\ Y e. B ) -> ( ( A. y e. { X , Y } y .<_ x /\ A. z e. B ( A. y e. { X , Y } y .<_ z -> x .<_ z ) ) <-> ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinval2.b | |- B = ( Base ` K ) |
|
| 2 | joinval2.l | |- .<_ = ( le ` K ) |
|
| 3 | joinval2.j | |- .\/ = ( join ` K ) |
|
| 4 | joinval2.k | |- ( ph -> K e. V ) |
|
| 5 | joinval2.x | |- ( ph -> X e. B ) |
|
| 6 | joinval2.y | |- ( ph -> Y e. B ) |
|
| 7 | breq1 | |- ( y = X -> ( y .<_ x <-> X .<_ x ) ) |
|
| 8 | breq1 | |- ( y = Y -> ( y .<_ x <-> Y .<_ x ) ) |
|
| 9 | 7 8 | ralprg | |- ( ( X e. B /\ Y e. B ) -> ( A. y e. { X , Y } y .<_ x <-> ( X .<_ x /\ Y .<_ x ) ) ) |
| 10 | breq1 | |- ( y = X -> ( y .<_ z <-> X .<_ z ) ) |
|
| 11 | breq1 | |- ( y = Y -> ( y .<_ z <-> Y .<_ z ) ) |
|
| 12 | 10 11 | ralprg | |- ( ( X e. B /\ Y e. B ) -> ( A. y e. { X , Y } y .<_ z <-> ( X .<_ z /\ Y .<_ z ) ) ) |
| 13 | 12 | imbi1d | |- ( ( X e. B /\ Y e. B ) -> ( ( A. y e. { X , Y } y .<_ z -> x .<_ z ) <-> ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) |
| 14 | 13 | ralbidv | |- ( ( X e. B /\ Y e. B ) -> ( A. z e. B ( A. y e. { X , Y } y .<_ z -> x .<_ z ) <-> A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) |
| 15 | 9 14 | anbi12d | |- ( ( X e. B /\ Y e. B ) -> ( ( A. y e. { X , Y } y .<_ x /\ A. z e. B ( A. y e. { X , Y } y .<_ z -> x .<_ z ) ) <-> ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) ) |