This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for join properties. (Contributed by NM, 16-Sep-2011) (Revised by NM, 12-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | joinval2.b | |- B = ( Base ` K ) |
|
| joinval2.l | |- .<_ = ( le ` K ) |
||
| joinval2.j | |- .\/ = ( join ` K ) |
||
| joinval2.k | |- ( ph -> K e. V ) |
||
| joinval2.x | |- ( ph -> X e. B ) |
||
| joinval2.y | |- ( ph -> Y e. B ) |
||
| joinlem.e | |- ( ph -> <. X , Y >. e. dom .\/ ) |
||
| Assertion | joinlem | |- ( ph -> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinval2.b | |- B = ( Base ` K ) |
|
| 2 | joinval2.l | |- .<_ = ( le ` K ) |
|
| 3 | joinval2.j | |- .\/ = ( join ` K ) |
|
| 4 | joinval2.k | |- ( ph -> K e. V ) |
|
| 5 | joinval2.x | |- ( ph -> X e. B ) |
|
| 6 | joinval2.y | |- ( ph -> Y e. B ) |
|
| 7 | joinlem.e | |- ( ph -> <. X , Y >. e. dom .\/ ) |
|
| 8 | 1 2 3 4 5 6 7 | joineu | |- ( ph -> E! x e. B ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) |
| 9 | riotasbc | |- ( E! x e. B ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) -> [. ( iota_ x e. B ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) / x ]. ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) |
|
| 10 | 8 9 | syl | |- ( ph -> [. ( iota_ x e. B ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) / x ]. ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) |
| 11 | 1 2 3 4 5 6 | joinval2 | |- ( ph -> ( X .\/ Y ) = ( iota_ x e. B ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) ) |
| 12 | 11 | sbceq1d | |- ( ph -> ( [. ( X .\/ Y ) / x ]. ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) <-> [. ( iota_ x e. B ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) / x ]. ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) ) |
| 13 | 10 12 | mpbird | |- ( ph -> [. ( X .\/ Y ) / x ]. ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) ) |
| 14 | ovex | |- ( X .\/ Y ) e. _V |
|
| 15 | breq2 | |- ( x = ( X .\/ Y ) -> ( X .<_ x <-> X .<_ ( X .\/ Y ) ) ) |
|
| 16 | breq2 | |- ( x = ( X .\/ Y ) -> ( Y .<_ x <-> Y .<_ ( X .\/ Y ) ) ) |
|
| 17 | 15 16 | anbi12d | |- ( x = ( X .\/ Y ) -> ( ( X .<_ x /\ Y .<_ x ) <-> ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) ) ) |
| 18 | breq1 | |- ( x = ( X .\/ Y ) -> ( x .<_ z <-> ( X .\/ Y ) .<_ z ) ) |
|
| 19 | 18 | imbi2d | |- ( x = ( X .\/ Y ) -> ( ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) <-> ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) |
| 20 | 19 | ralbidv | |- ( x = ( X .\/ Y ) -> ( A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) <-> A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) |
| 21 | 17 20 | anbi12d | |- ( x = ( X .\/ Y ) -> ( ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) <-> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) ) |
| 22 | 14 21 | sbcie | |- ( [. ( X .\/ Y ) / x ]. ( ( X .<_ x /\ Y .<_ x ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> x .<_ z ) ) <-> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) |
| 23 | 13 22 | sylib | |- ( ph -> ( ( X .<_ ( X .\/ Y ) /\ Y .<_ ( X .\/ Y ) ) /\ A. z e. B ( ( X .<_ z /\ Y .<_ z ) -> ( X .\/ Y ) .<_ z ) ) ) |