This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relationship involving union and indexed union. Exercise 25 of Enderton p. 33. (Contributed by NM, 25-Nov-2003) (Proof shortened by Mario Carneiro, 17-Nov-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iununi | |- ( ( B = (/) -> A = (/) ) <-> ( A u. U. B ) = U_ x e. B ( A u. x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne | |- ( B =/= (/) <-> -. B = (/) ) |
|
| 2 | iunconst | |- ( B =/= (/) -> U_ x e. B A = A ) |
|
| 3 | 1 2 | sylbir | |- ( -. B = (/) -> U_ x e. B A = A ) |
| 4 | iun0 | |- U_ x e. B (/) = (/) |
|
| 5 | id | |- ( A = (/) -> A = (/) ) |
|
| 6 | 5 | iuneq2d | |- ( A = (/) -> U_ x e. B A = U_ x e. B (/) ) |
| 7 | 4 6 5 | 3eqtr4a | |- ( A = (/) -> U_ x e. B A = A ) |
| 8 | 3 7 | ja | |- ( ( B = (/) -> A = (/) ) -> U_ x e. B A = A ) |
| 9 | 8 | eqcomd | |- ( ( B = (/) -> A = (/) ) -> A = U_ x e. B A ) |
| 10 | 9 | uneq1d | |- ( ( B = (/) -> A = (/) ) -> ( A u. U_ x e. B x ) = ( U_ x e. B A u. U_ x e. B x ) ) |
| 11 | uniiun | |- U. B = U_ x e. B x |
|
| 12 | 11 | uneq2i | |- ( A u. U. B ) = ( A u. U_ x e. B x ) |
| 13 | iunun | |- U_ x e. B ( A u. x ) = ( U_ x e. B A u. U_ x e. B x ) |
|
| 14 | 10 12 13 | 3eqtr4g | |- ( ( B = (/) -> A = (/) ) -> ( A u. U. B ) = U_ x e. B ( A u. x ) ) |
| 15 | unieq | |- ( B = (/) -> U. B = U. (/) ) |
|
| 16 | uni0 | |- U. (/) = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( B = (/) -> U. B = (/) ) |
| 18 | 17 | uneq2d | |- ( B = (/) -> ( A u. U. B ) = ( A u. (/) ) ) |
| 19 | un0 | |- ( A u. (/) ) = A |
|
| 20 | 18 19 | eqtrdi | |- ( B = (/) -> ( A u. U. B ) = A ) |
| 21 | iuneq1 | |- ( B = (/) -> U_ x e. B ( A u. x ) = U_ x e. (/) ( A u. x ) ) |
|
| 22 | 0iun | |- U_ x e. (/) ( A u. x ) = (/) |
|
| 23 | 21 22 | eqtrdi | |- ( B = (/) -> U_ x e. B ( A u. x ) = (/) ) |
| 24 | 20 23 | eqeq12d | |- ( B = (/) -> ( ( A u. U. B ) = U_ x e. B ( A u. x ) <-> A = (/) ) ) |
| 25 | 24 | biimpcd | |- ( ( A u. U. B ) = U_ x e. B ( A u. x ) -> ( B = (/) -> A = (/) ) ) |
| 26 | 14 25 | impbii | |- ( ( B = (/) -> A = (/) ) <-> ( A u. U. B ) = U_ x e. B ( A u. x ) ) |