This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an integral only matters in its intersection with RR . (Contributed by Mario Carneiro, 29-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itgresr | |- S. A B _d x = S. ( A i^i RR ) B _d x |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( k e. ( 0 ... 3 ) /\ x e. RR ) -> x e. RR ) |
|
| 2 | 1 | biantrud | |- ( ( k e. ( 0 ... 3 ) /\ x e. RR ) -> ( x e. A <-> ( x e. A /\ x e. RR ) ) ) |
| 3 | elin | |- ( x e. ( A i^i RR ) <-> ( x e. A /\ x e. RR ) ) |
|
| 4 | 2 3 | bitr4di | |- ( ( k e. ( 0 ... 3 ) /\ x e. RR ) -> ( x e. A <-> x e. ( A i^i RR ) ) ) |
| 5 | 4 | anbi1d | |- ( ( k e. ( 0 ... 3 ) /\ x e. RR ) -> ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) <-> ( x e. ( A i^i RR ) /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) ) ) |
| 6 | 5 | ifbid | |- ( ( k e. ( 0 ... 3 ) /\ x e. RR ) -> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) = if ( ( x e. ( A i^i RR ) /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) |
| 7 | 6 | mpteq2dva | |- ( k e. ( 0 ... 3 ) -> ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) = ( x e. RR |-> if ( ( x e. ( A i^i RR ) /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) |
| 8 | 7 | fveq2d | |- ( k e. ( 0 ... 3 ) -> ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) = ( S.2 ` ( x e. RR |-> if ( ( x e. ( A i^i RR ) /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 9 | 8 | oveq2d | |- ( k e. ( 0 ... 3 ) -> ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. ( A i^i RR ) /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) ) |
| 10 | 9 | sumeq2i | |- sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. ( A i^i RR ) /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 11 | eqid | |- ( Re ` ( B / ( _i ^ k ) ) ) = ( Re ` ( B / ( _i ^ k ) ) ) |
|
| 12 | 11 | dfitg | |- S. A B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. A /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 13 | 11 | dfitg | |- S. ( A i^i RR ) B _d x = sum_ k e. ( 0 ... 3 ) ( ( _i ^ k ) x. ( S.2 ` ( x e. RR |-> if ( ( x e. ( A i^i RR ) /\ 0 <_ ( Re ` ( B / ( _i ^ k ) ) ) ) , ( Re ` ( B / ( _i ^ k ) ) ) , 0 ) ) ) ) |
| 14 | 10 12 13 | 3eqtr4i | |- S. A B _d x = S. ( A i^i RR ) B _d x |