This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an integral only matters in its intersection with RR . (Contributed by Mario Carneiro, 29-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itgresr | ⊢ ∫ 𝐴 𝐵 d 𝑥 = ∫ ( 𝐴 ∩ ℝ ) 𝐵 d 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | ⊢ ( ( 𝑘 ∈ ( 0 ... 3 ) ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ ) | |
| 2 | 1 | biantrud | ⊢ ( ( 𝑘 ∈ ( 0 ... 3 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ℝ ) ) ) |
| 3 | elin | ⊢ ( 𝑥 ∈ ( 𝐴 ∩ ℝ ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑥 ∈ ℝ ) ) | |
| 4 | 2 3 | bitr4di | ⊢ ( ( 𝑘 ∈ ( 0 ... 3 ) ∧ 𝑥 ∈ ℝ ) → ( 𝑥 ∈ 𝐴 ↔ 𝑥 ∈ ( 𝐴 ∩ ℝ ) ) ) |
| 5 | 4 | anbi1d | ⊢ ( ( 𝑘 ∈ ( 0 ... 3 ) ∧ 𝑥 ∈ ℝ ) → ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) ↔ ( 𝑥 ∈ ( 𝐴 ∩ ℝ ) ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) ) ) |
| 6 | 5 | ifbid | ⊢ ( ( 𝑘 ∈ ( 0 ... 3 ) ∧ 𝑥 ∈ ℝ ) → if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) = if ( ( 𝑥 ∈ ( 𝐴 ∩ ℝ ) ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) |
| 7 | 6 | mpteq2dva | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) = ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ( 𝐴 ∩ ℝ ) ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) |
| 8 | 7 | fveq2d | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) = ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ( 𝐴 ∩ ℝ ) ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 9 | 8 | oveq2d | ⊢ ( 𝑘 ∈ ( 0 ... 3 ) → ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ( 𝐴 ∩ ℝ ) ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) ) |
| 10 | 9 | sumeq2i | ⊢ Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ( 𝐴 ∩ ℝ ) ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 11 | eqid | ⊢ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) = ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) | |
| 12 | 11 | dfitg | ⊢ ∫ 𝐴 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ 𝐴 ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 13 | 11 | dfitg | ⊢ ∫ ( 𝐴 ∩ ℝ ) 𝐵 d 𝑥 = Σ 𝑘 ∈ ( 0 ... 3 ) ( ( i ↑ 𝑘 ) · ( ∫2 ‘ ( 𝑥 ∈ ℝ ↦ if ( ( 𝑥 ∈ ( 𝐴 ∩ ℝ ) ∧ 0 ≤ ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) ) , ( ℜ ‘ ( 𝐵 / ( i ↑ 𝑘 ) ) ) , 0 ) ) ) ) |
| 14 | 10 12 13 | 3eqtr4i | ⊢ ∫ 𝐴 𝐵 d 𝑥 = ∫ ( 𝐴 ∩ ℝ ) 𝐵 d 𝑥 |