This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 29-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgmpt.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| Assertion | itgmpt | |- ( ph -> S. A B _d x = S. A ( ( x e. A |-> B ) ` y ) _d y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmpt.1 | |- ( ( ph /\ x e. A ) -> B e. V ) |
|
| 2 | fveq2 | |- ( y = x -> ( ( x e. A |-> B ) ` y ) = ( ( x e. A |-> B ) ` x ) ) |
|
| 3 | nffvmpt1 | |- F/_ x ( ( x e. A |-> B ) ` y ) |
|
| 4 | nfcv | |- F/_ y ( ( x e. A |-> B ) ` x ) |
|
| 5 | 2 3 4 | cbvitg | |- S. A ( ( x e. A |-> B ) ` y ) _d y = S. A ( ( x e. A |-> B ) ` x ) _d x |
| 6 | simpr | |- ( ( ph /\ x e. A ) -> x e. A ) |
|
| 7 | eqid | |- ( x e. A |-> B ) = ( x e. A |-> B ) |
|
| 8 | 7 | fvmpt2 | |- ( ( x e. A /\ B e. V ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 9 | 6 1 8 | syl2anc | |- ( ( ph /\ x e. A ) -> ( ( x e. A |-> B ) ` x ) = B ) |
| 10 | 9 | itgeq2dv | |- ( ph -> S. A ( ( x e. A |-> B ) ` x ) _d x = S. A B _d x ) |
| 11 | 5 10 | eqtr2id | |- ( ph -> S. A B _d x = S. A ( ( x e. A |-> B ) ` y ) _d y ) |