This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Change bound variable in an integral. (Contributed by Mario Carneiro, 29-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | itgmpt.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| Assertion | itgmpt | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) d 𝑦 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmpt.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ 𝑉 ) | |
| 2 | fveq2 | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) ) | |
| 3 | nffvmpt1 | ⊢ Ⅎ 𝑥 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) | |
| 4 | nfcv | ⊢ Ⅎ 𝑦 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) | |
| 5 | 2 3 4 | cbvitg | ⊢ ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) d 𝑦 = ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) d 𝑥 |
| 6 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐴 ) | |
| 7 | eqid | ⊢ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
| 8 | 7 | fvmpt2 | ⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝑉 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 9 | 6 1 8 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) = 𝐵 ) |
| 10 | 9 | itgeq2dv | ⊢ ( 𝜑 → ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑥 ) d 𝑥 = ∫ 𝐴 𝐵 d 𝑥 ) |
| 11 | 5 10 | eqtr2id | ⊢ ( 𝜑 → ∫ 𝐴 𝐵 d 𝑥 = ∫ 𝐴 ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ‘ 𝑦 ) d 𝑦 ) |