This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of walks (in an undirected graph) of a fixed length as words over the set of vertices. (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | wwlksn | |- ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | |- ( g = G -> ( WWalks ` g ) = ( WWalks ` G ) ) |
|
| 2 | 1 | adantl | |- ( ( n = N /\ g = G ) -> ( WWalks ` g ) = ( WWalks ` G ) ) |
| 3 | oveq1 | |- ( n = N -> ( n + 1 ) = ( N + 1 ) ) |
|
| 4 | 3 | eqeq2d | |- ( n = N -> ( ( # ` w ) = ( n + 1 ) <-> ( # ` w ) = ( N + 1 ) ) ) |
| 5 | 4 | adantr | |- ( ( n = N /\ g = G ) -> ( ( # ` w ) = ( n + 1 ) <-> ( # ` w ) = ( N + 1 ) ) ) |
| 6 | 2 5 | rabeqbidv | |- ( ( n = N /\ g = G ) -> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |
| 7 | df-wwlksn | |- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |
|
| 8 | fvex | |- ( WWalks ` G ) e. _V |
|
| 9 | 8 | rabex | |- { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } e. _V |
| 10 | 6 7 9 | ovmpoa | |- ( ( N e. NN0 /\ G e. _V ) -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |
| 11 | 10 | expcom | |- ( G e. _V -> ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) ) |
| 12 | 7 | reldmmpo | |- Rel dom WWalksN |
| 13 | 12 | ovprc2 | |- ( -. G e. _V -> ( N WWalksN G ) = (/) ) |
| 14 | fvprc | |- ( -. G e. _V -> ( WWalks ` G ) = (/) ) |
|
| 15 | 14 | rabeqdv | |- ( -. G e. _V -> { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } = { w e. (/) | ( # ` w ) = ( N + 1 ) } ) |
| 16 | rab0 | |- { w e. (/) | ( # ` w ) = ( N + 1 ) } = (/) |
|
| 17 | 15 16 | eqtrdi | |- ( -. G e. _V -> { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } = (/) ) |
| 18 | 13 17 | eqtr4d | |- ( -. G e. _V -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |
| 19 | 18 | a1d | |- ( -. G e. _V -> ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) ) |
| 20 | 11 19 | pm2.61i | |- ( N e. NN0 -> ( N WWalksN G ) = { w e. ( WWalks ` G ) | ( # ` w ) = ( N + 1 ) } ) |