This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a pair in a restricted binary relation M expressed as an ordered-pair class abstraction: M is the binary relation W restricted by the conditions ps and ta . (Contributed by AV, 31-Jan-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 2rbropap.1 | |- ( ph -> M = { <. f , p >. | ( f W p /\ ps /\ ta ) } ) |
|
| 2rbropap.2 | |- ( ( f = F /\ p = P ) -> ( ps <-> ch ) ) |
||
| 2rbropap.3 | |- ( ( f = F /\ p = P ) -> ( ta <-> th ) ) |
||
| Assertion | 2rbropap | |- ( ( ph /\ F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch /\ th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2rbropap.1 | |- ( ph -> M = { <. f , p >. | ( f W p /\ ps /\ ta ) } ) |
|
| 2 | 2rbropap.2 | |- ( ( f = F /\ p = P ) -> ( ps <-> ch ) ) |
|
| 3 | 2rbropap.3 | |- ( ( f = F /\ p = P ) -> ( ta <-> th ) ) |
|
| 4 | 3anass | |- ( ( f W p /\ ps /\ ta ) <-> ( f W p /\ ( ps /\ ta ) ) ) |
|
| 5 | 4 | opabbii | |- { <. f , p >. | ( f W p /\ ps /\ ta ) } = { <. f , p >. | ( f W p /\ ( ps /\ ta ) ) } |
| 6 | 1 5 | eqtrdi | |- ( ph -> M = { <. f , p >. | ( f W p /\ ( ps /\ ta ) ) } ) |
| 7 | 2 3 | anbi12d | |- ( ( f = F /\ p = P ) -> ( ( ps /\ ta ) <-> ( ch /\ th ) ) ) |
| 8 | 6 7 | rbropap | |- ( ( ph /\ F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ( ch /\ th ) ) ) ) |
| 9 | 3anass | |- ( ( F W P /\ ch /\ th ) <-> ( F W P /\ ( ch /\ th ) ) ) |
|
| 10 | 8 9 | bitr4di | |- ( ( ph /\ F e. X /\ P e. Y ) -> ( F M P <-> ( F W P /\ ch /\ th ) ) ) |