This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define a topological left module, which is just what its name suggests: instead of a group over a ring with a scalar product connecting them, it is a topological group over a topological ring with a continuous scalar product. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-tlm | |- TopMod = { w e. ( TopMnd i^i LMod ) | ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctlm | |- TopMod |
|
| 1 | vw | |- w |
|
| 2 | ctmd | |- TopMnd |
|
| 3 | clmod | |- LMod |
|
| 4 | 2 3 | cin | |- ( TopMnd i^i LMod ) |
| 5 | csca | |- Scalar |
|
| 6 | 1 | cv | |- w |
| 7 | 6 5 | cfv | |- ( Scalar ` w ) |
| 8 | ctrg | |- TopRing |
|
| 9 | 7 8 | wcel | |- ( Scalar ` w ) e. TopRing |
| 10 | cscaf | |- .sf |
|
| 11 | 6 10 | cfv | |- ( .sf ` w ) |
| 12 | ctopn | |- TopOpen |
|
| 13 | 7 12 | cfv | |- ( TopOpen ` ( Scalar ` w ) ) |
| 14 | ctx | |- tX |
|
| 15 | 6 12 | cfv | |- ( TopOpen ` w ) |
| 16 | 13 15 14 | co | |- ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) |
| 17 | ccn | |- Cn |
|
| 18 | 16 15 17 | co | |- ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) |
| 19 | 11 18 | wcel | |- ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) |
| 20 | 9 19 | wa | |- ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) |
| 21 | 20 1 4 | crab | |- { w e. ( TopMnd i^i LMod ) | ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) } |
| 22 | 0 21 | wceq | |- TopMod = { w e. ( TopMnd i^i LMod ) | ( ( Scalar ` w ) e. TopRing /\ ( .sf ` w ) e. ( ( ( TopOpen ` ( Scalar ` w ) ) tX ( TopOpen ` w ) ) Cn ( TopOpen ` w ) ) ) } |