This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The properties of a subgraph. (Contributed by AV, 19-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubgr.v | |- V = ( Vtx ` S ) |
|
| issubgr.a | |- A = ( Vtx ` G ) |
||
| issubgr.i | |- I = ( iEdg ` S ) |
||
| issubgr.b | |- B = ( iEdg ` G ) |
||
| issubgr.e | |- E = ( Edg ` S ) |
||
| Assertion | subgrprop | |- ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubgr.v | |- V = ( Vtx ` S ) |
|
| 2 | issubgr.a | |- A = ( Vtx ` G ) |
|
| 3 | issubgr.i | |- I = ( iEdg ` S ) |
|
| 4 | issubgr.b | |- B = ( iEdg ` G ) |
|
| 5 | issubgr.e | |- E = ( Edg ` S ) |
|
| 6 | subgrv | |- ( S SubGraph G -> ( S e. _V /\ G e. _V ) ) |
|
| 7 | 1 2 3 4 5 | issubgr | |- ( ( G e. _V /\ S e. _V ) -> ( S SubGraph G <-> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
| 8 | 7 | biimpd | |- ( ( G e. _V /\ S e. _V ) -> ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
| 9 | 8 | ancoms | |- ( ( S e. _V /\ G e. _V ) -> ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) ) |
| 10 | 6 9 | mpcom | |- ( S SubGraph G -> ( V C_ A /\ I = ( B |` dom I ) /\ E C_ ~P V ) ) |