This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrnghmd.b | |- B = ( Base ` R ) |
|
| isrnghmd.t | |- .x. = ( .r ` R ) |
||
| isrnghmd.u | |- .X. = ( .r ` S ) |
||
| isrnghmd.r | |- ( ph -> R e. Rng ) |
||
| isrnghmd.s | |- ( ph -> S e. Rng ) |
||
| isrnghmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
||
| isrnghmd.c | |- C = ( Base ` S ) |
||
| isrnghmd.p | |- .+ = ( +g ` R ) |
||
| isrnghmd.q | |- .+^ = ( +g ` S ) |
||
| isrnghmd.f | |- ( ph -> F : B --> C ) |
||
| isrnghmd.hp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
||
| Assertion | isrnghmd | |- ( ph -> F e. ( R RngHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnghmd.b | |- B = ( Base ` R ) |
|
| 2 | isrnghmd.t | |- .x. = ( .r ` R ) |
|
| 3 | isrnghmd.u | |- .X. = ( .r ` S ) |
|
| 4 | isrnghmd.r | |- ( ph -> R e. Rng ) |
|
| 5 | isrnghmd.s | |- ( ph -> S e. Rng ) |
|
| 6 | isrnghmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
|
| 7 | isrnghmd.c | |- C = ( Base ` S ) |
|
| 8 | isrnghmd.p | |- .+ = ( +g ` R ) |
|
| 9 | isrnghmd.q | |- .+^ = ( +g ` S ) |
|
| 10 | isrnghmd.f | |- ( ph -> F : B --> C ) |
|
| 11 | isrnghmd.hp | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .+ y ) ) = ( ( F ` x ) .+^ ( F ` y ) ) ) |
|
| 12 | rngabl | |- ( R e. Rng -> R e. Abel ) |
|
| 13 | ablgrp | |- ( R e. Abel -> R e. Grp ) |
|
| 14 | 4 12 13 | 3syl | |- ( ph -> R e. Grp ) |
| 15 | rngabl | |- ( S e. Rng -> S e. Abel ) |
|
| 16 | ablgrp | |- ( S e. Abel -> S e. Grp ) |
|
| 17 | 5 15 16 | 3syl | |- ( ph -> S e. Grp ) |
| 18 | 1 7 8 9 14 17 10 11 | isghmd | |- ( ph -> F e. ( R GrpHom S ) ) |
| 19 | 1 2 3 4 5 6 18 | isrnghm2d | |- ( ph -> F e. ( R RngHom S ) ) |