This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Demonstration of non-unital ring homomorphism. (Contributed by AV, 23-Feb-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isrnghmd.b | |- B = ( Base ` R ) |
|
| isrnghmd.t | |- .x. = ( .r ` R ) |
||
| isrnghmd.u | |- .X. = ( .r ` S ) |
||
| isrnghmd.r | |- ( ph -> R e. Rng ) |
||
| isrnghmd.s | |- ( ph -> S e. Rng ) |
||
| isrnghmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
||
| isrnghm2d.f | |- ( ph -> F e. ( R GrpHom S ) ) |
||
| Assertion | isrnghm2d | |- ( ph -> F e. ( R RngHom S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isrnghmd.b | |- B = ( Base ` R ) |
|
| 2 | isrnghmd.t | |- .x. = ( .r ` R ) |
|
| 3 | isrnghmd.u | |- .X. = ( .r ` S ) |
|
| 4 | isrnghmd.r | |- ( ph -> R e. Rng ) |
|
| 5 | isrnghmd.s | |- ( ph -> S e. Rng ) |
|
| 6 | isrnghmd.ht | |- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
|
| 7 | isrnghm2d.f | |- ( ph -> F e. ( R GrpHom S ) ) |
|
| 8 | 4 5 | jca | |- ( ph -> ( R e. Rng /\ S e. Rng ) ) |
| 9 | 6 | ralrimivva | |- ( ph -> A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) |
| 10 | 7 9 | jca | |- ( ph -> ( F e. ( R GrpHom S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) ) |
| 11 | 1 2 3 | isrnghm | |- ( F e. ( R RngHom S ) <-> ( ( R e. Rng /\ S e. Rng ) /\ ( F e. ( R GrpHom S ) /\ A. x e. B A. y e. B ( F ` ( x .x. y ) ) = ( ( F ` x ) .X. ( F ` y ) ) ) ) ) |
| 12 | 8 10 11 | sylanbrc | |- ( ph -> F e. ( R RngHom S ) ) |