This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of all pre-Hilbert spaces (inner product spaces) over arbitrary fields with involution. (Some textbook definitions are more restrictive and require the field of scalars to be the field of real or complex numbers). (Contributed by NM, 22-Sep-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-phl | |- PreHil = { g e. LVec | [. ( Base ` g ) / v ]. [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cphl | |- PreHil |
|
| 1 | vg | |- g |
|
| 2 | clvec | |- LVec |
|
| 3 | cbs | |- Base |
|
| 4 | 1 | cv | |- g |
| 5 | 4 3 | cfv | |- ( Base ` g ) |
| 6 | vv | |- v |
|
| 7 | cip | |- .i |
|
| 8 | 4 7 | cfv | |- ( .i ` g ) |
| 9 | vh | |- h |
|
| 10 | csca | |- Scalar |
|
| 11 | 4 10 | cfv | |- ( Scalar ` g ) |
| 12 | vf | |- f |
|
| 13 | 12 | cv | |- f |
| 14 | csr | |- *Ring |
|
| 15 | 13 14 | wcel | |- f e. *Ring |
| 16 | vx | |- x |
|
| 17 | 6 | cv | |- v |
| 18 | vy | |- y |
|
| 19 | 18 | cv | |- y |
| 20 | 9 | cv | |- h |
| 21 | 16 | cv | |- x |
| 22 | 19 21 20 | co | |- ( y h x ) |
| 23 | 18 17 22 | cmpt | |- ( y e. v |-> ( y h x ) ) |
| 24 | clmhm | |- LMHom |
|
| 25 | crglmod | |- ringLMod |
|
| 26 | 13 25 | cfv | |- ( ringLMod ` f ) |
| 27 | 4 26 24 | co | |- ( g LMHom ( ringLMod ` f ) ) |
| 28 | 23 27 | wcel | |- ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) |
| 29 | 21 21 20 | co | |- ( x h x ) |
| 30 | c0g | |- 0g |
|
| 31 | 13 30 | cfv | |- ( 0g ` f ) |
| 32 | 29 31 | wceq | |- ( x h x ) = ( 0g ` f ) |
| 33 | 4 30 | cfv | |- ( 0g ` g ) |
| 34 | 21 33 | wceq | |- x = ( 0g ` g ) |
| 35 | 32 34 | wi | |- ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) |
| 36 | cstv | |- *r |
|
| 37 | 13 36 | cfv | |- ( *r ` f ) |
| 38 | 21 19 20 | co | |- ( x h y ) |
| 39 | 38 37 | cfv | |- ( ( *r ` f ) ` ( x h y ) ) |
| 40 | 39 22 | wceq | |- ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) |
| 41 | 40 18 17 | wral | |- A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) |
| 42 | 28 35 41 | w3a | |- ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) |
| 43 | 42 16 17 | wral | |- A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) |
| 44 | 15 43 | wa | |- ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) |
| 45 | 44 12 11 | wsbc | |- [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) |
| 46 | 45 9 8 | wsbc | |- [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) |
| 47 | 46 6 5 | wsbc | |- [. ( Base ` g ) / v ]. [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) |
| 48 | 47 1 2 | crab | |- { g e. LVec | [. ( Base ` g ) / v ]. [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) } |
| 49 | 0 48 | wceq | |- PreHil = { g e. LVec | [. ( Base ` g ) / v ]. [. ( .i ` g ) / h ]. [. ( Scalar ` g ) / f ]. ( f e. *Ring /\ A. x e. v ( ( y e. v |-> ( y h x ) ) e. ( g LMHom ( ringLMod ` f ) ) /\ ( ( x h x ) = ( 0g ` f ) -> x = ( 0g ` g ) ) /\ A. y e. v ( ( *r ` f ) ` ( x h y ) ) = ( y h x ) ) ) } |