This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A weak form of isofr that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | isofr2 | |- ( ( H Isom R , S ( A , B ) /\ B e. V ) -> ( S Fr B -> R Fr A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( H Isom R , S ( A , B ) /\ B e. V ) -> H Isom R , S ( A , B ) ) |
|
| 2 | imassrn | |- ( H " x ) C_ ran H |
|
| 3 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 4 | f1of | |- ( H : A -1-1-onto-> B -> H : A --> B ) |
|
| 5 | frn | |- ( H : A --> B -> ran H C_ B ) |
|
| 6 | 3 4 5 | 3syl | |- ( H Isom R , S ( A , B ) -> ran H C_ B ) |
| 7 | 2 6 | sstrid | |- ( H Isom R , S ( A , B ) -> ( H " x ) C_ B ) |
| 8 | ssexg | |- ( ( ( H " x ) C_ B /\ B e. V ) -> ( H " x ) e. _V ) |
|
| 9 | 7 8 | sylan | |- ( ( H Isom R , S ( A , B ) /\ B e. V ) -> ( H " x ) e. _V ) |
| 10 | 1 9 | isofrlem | |- ( ( H Isom R , S ( A , B ) /\ B e. V ) -> ( S Fr B -> R Fr A ) ) |