This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure operation is idempotent. (Contributed by NM, 2-Oct-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | clsidm | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( cls ` J ) ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | 1 | clscld | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) ) |
| 3 | 1 | clsss3 | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) C_ X ) |
| 4 | 1 | iscld3 | |- ( ( J e. Top /\ ( ( cls ` J ) ` S ) C_ X ) -> ( ( ( cls ` J ) ` S ) e. ( Clsd ` J ) <-> ( ( cls ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( cls ` J ) ` S ) ) ) |
| 5 | 3 4 | syldan | |- ( ( J e. Top /\ S C_ X ) -> ( ( ( cls ` J ) ` S ) e. ( Clsd ` J ) <-> ( ( cls ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( cls ` J ) ` S ) ) ) |
| 6 | 2 5 | mpbid | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` ( ( cls ` J ) ` S ) ) = ( ( cls ` J ) ` S ) ) |