This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004) (Proof shortened by Andrew Salmon, 22-Oct-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfiso.1 | |- F/_ x H |
|
| nfiso.2 | |- F/_ x R |
||
| nfiso.3 | |- F/_ x S |
||
| nfiso.4 | |- F/_ x A |
||
| nfiso.5 | |- F/_ x B |
||
| Assertion | nfiso | |- F/ x H Isom R , S ( A , B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfiso.1 | |- F/_ x H |
|
| 2 | nfiso.2 | |- F/_ x R |
|
| 3 | nfiso.3 | |- F/_ x S |
|
| 4 | nfiso.4 | |- F/_ x A |
|
| 5 | nfiso.5 | |- F/_ x B |
|
| 6 | df-isom | |- ( H Isom R , S ( A , B ) <-> ( H : A -1-1-onto-> B /\ A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) ) ) |
|
| 7 | 1 4 5 | nff1o | |- F/ x H : A -1-1-onto-> B |
| 8 | nfcv | |- F/_ x y |
|
| 9 | nfcv | |- F/_ x z |
|
| 10 | 8 2 9 | nfbr | |- F/ x y R z |
| 11 | 1 8 | nffv | |- F/_ x ( H ` y ) |
| 12 | 1 9 | nffv | |- F/_ x ( H ` z ) |
| 13 | 11 3 12 | nfbr | |- F/ x ( H ` y ) S ( H ` z ) |
| 14 | 10 13 | nfbi | |- F/ x ( y R z <-> ( H ` y ) S ( H ` z ) ) |
| 15 | 4 14 | nfralw | |- F/ x A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) |
| 16 | 4 15 | nfralw | |- F/ x A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) |
| 17 | 7 16 | nfan | |- F/ x ( H : A -1-1-onto-> B /\ A. y e. A A. z e. A ( y R z <-> ( H ` y ) S ( H ` z ) ) ) |
| 18 | 6 17 | nfxfr | |- F/ x H Isom R , S ( A , B ) |