This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The natural transformation set operation is a well-defined function. (Contributed by Mario Carneiro, 12-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | natrcl.1 | |- N = ( C Nat D ) |
|
| Assertion | natffn | |- N Fn ( ( C Func D ) X. ( C Func D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natrcl.1 | |- N = ( C Nat D ) |
|
| 2 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 3 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 4 | eqid | |- ( Hom ` D ) = ( Hom ` D ) |
|
| 5 | eqid | |- ( comp ` D ) = ( comp ` D ) |
|
| 6 | 1 2 3 4 5 | natfval | |- N = ( f e. ( C Func D ) , g e. ( C Func D ) |-> [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. h e. ( x ( Hom ` C ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } ) |
| 7 | ovex | |- ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) e. _V |
|
| 8 | 7 | rgenw | |- A. x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) e. _V |
| 9 | ixpexg | |- ( A. x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) e. _V -> X_ x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) e. _V ) |
|
| 10 | 8 9 | ax-mp | |- X_ x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) e. _V |
| 11 | 10 | rabex | |- { a e. X_ x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. h e. ( x ( Hom ` C ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } e. _V |
| 12 | 11 | csbex | |- [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. h e. ( x ( Hom ` C ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } e. _V |
| 13 | 12 | csbex | |- [_ ( 1st ` f ) / r ]_ [_ ( 1st ` g ) / s ]_ { a e. X_ x e. ( Base ` C ) ( ( r ` x ) ( Hom ` D ) ( s ` x ) ) | A. x e. ( Base ` C ) A. y e. ( Base ` C ) A. h e. ( x ( Hom ` C ) y ) ( ( a ` y ) ( <. ( r ` x ) , ( r ` y ) >. ( comp ` D ) ( s ` y ) ) ( ( x ( 2nd ` f ) y ) ` h ) ) = ( ( ( x ( 2nd ` g ) y ) ` h ) ( <. ( r ` x ) , ( s ` x ) >. ( comp ` D ) ( s ` y ) ) ( a ` x ) ) } e. _V |
| 14 | 6 13 | fnmpoi | |- N Fn ( ( C Func D ) X. ( C Func D ) ) |