This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ismndo.1 | |- X = dom dom G |
|
| Assertion | ismndo | |- ( G e. A -> ( G e. MndOp <-> ( G e. SemiGrp /\ E. x e. X A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismndo.1 | |- X = dom dom G |
|
| 2 | df-mndo | |- MndOp = ( SemiGrp i^i ExId ) |
|
| 3 | 2 | eleq2i | |- ( G e. MndOp <-> G e. ( SemiGrp i^i ExId ) ) |
| 4 | elin | |- ( G e. ( SemiGrp i^i ExId ) <-> ( G e. SemiGrp /\ G e. ExId ) ) |
|
| 5 | 1 | isexid | |- ( G e. A -> ( G e. ExId <-> E. x e. X A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) |
| 6 | 5 | anbi2d | |- ( G e. A -> ( ( G e. SemiGrp /\ G e. ExId ) <-> ( G e. SemiGrp /\ E. x e. X A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) ) |
| 7 | 4 6 | bitrid | |- ( G e. A -> ( G e. ( SemiGrp i^i ExId ) <-> ( G e. SemiGrp /\ E. x e. X A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) ) |
| 8 | 3 7 | bitrid | |- ( G e. A -> ( G e. MndOp <-> ( G e. SemiGrp /\ E. x e. X A. y e. X ( ( x G y ) = y /\ ( y G x ) = y ) ) ) ) |