This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a monoid". (Contributed by FL, 2-Nov-2009) (Revised by Mario Carneiro, 22-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ismndo.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| Assertion | ismndo | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismndo.1 | ⊢ 𝑋 = dom dom 𝐺 | |
| 2 | df-mndo | ⊢ MndOp = ( SemiGrp ∩ ExId ) | |
| 3 | 2 | eleq2i | ⊢ ( 𝐺 ∈ MndOp ↔ 𝐺 ∈ ( SemiGrp ∩ ExId ) ) |
| 4 | elin | ⊢ ( 𝐺 ∈ ( SemiGrp ∩ ExId ) ↔ ( 𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ) | |
| 5 | 1 | isexid | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ ExId ↔ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) |
| 6 | 5 | anbi2d | ⊢ ( 𝐺 ∈ 𝐴 → ( ( 𝐺 ∈ SemiGrp ∧ 𝐺 ∈ ExId ) ↔ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |
| 7 | 4 6 | bitrid | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ ( SemiGrp ∩ ExId ) ↔ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |
| 8 | 3 7 | bitrid | ⊢ ( 𝐺 ∈ 𝐴 → ( 𝐺 ∈ MndOp ↔ ( 𝐺 ∈ SemiGrp ∧ ∃ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( ( 𝑥 𝐺 𝑦 ) = 𝑦 ∧ ( 𝑦 𝐺 𝑥 ) = 𝑦 ) ) ) ) |